
Bachelor project proposal: Incremental Distributed Conflict-free
Data Synchronization with Write-exclusive Locks and ZFS

Silvan Mosberger

October 23, 2018

1 Description
The goal of this project will be to implement a data
synchronization tool based on the ZFS filesystem (or
any other base that supports the required primitives).
The idea is:

• There is a single node holding the write-exclusive
lock to the data, only that node can make modifi-
cations

• All other nodes only have read access to a poten-
tially older version of the data.

• A single command is used to transfer the write lock
from a node A to node B. This will update B with
the newest data from A, while making A a read-only
version.

Additionally only the two nodes involved in the lock
transfer are required to be online during that operation,
which turns out to be non-trivial if efficient incremental
updates are wanted. There won’t be any modification
conflicts between different nodes, because only a single
one can ever update the data, which stands in contrast
to most conventional data synchronization tools which
need to fall back to merging strategies. To implement
this, a number of primitive operations are assumed to be
available. What makes this work so well is that the ZFS
filesystem just so happens to expose the necessary primi-
tives and is very efficient at executing them. Haskell will
be used for the implementation due to its big library
ecosystem and my familiarity with the language.

1.1 Primitives
The necessary primitives are:

• An efficient snapshot can be taken of the changed
data

• The difference between snapshots can be efficiently
serialized, transferred between nodes, deserialized
and applied to an existing snapshot with a matching
version

• A copy of the data on a node can be set read-only
or read-write

1.2 How it works
The table below shows a simple walkthrough of how the
tool is meant to work. ’*’ stands for that node having the

write lock. A number stands for a snapshot identifier,
increasing by one every time the data is modified. Every
node may persist a list of snapshots. Operations are
snap for creating a snapshot, ro for setting a node read-
only, rw for setting a node read-write. N->M for updating
node M with info from N. This example shows 3 nodes,
A, B and C, starting with A having the write lock, that
being transferred to B, then to C, then back to B again,
then back to A.

1



operation A B C notes
start * - - We start with a single node A with the write lock
ro A + snap 0 - - Making A read-only and taking the first snapshot

with id 0
A->B 0 0 - Initializing node B with the new snapshot
rw B 0 0* - Giving the write lock to B, after this point B may

modify the data
ro B + snap 0 0,1 - Keeping snapshot 0 to allow knowing the diff between 0

and the snapshot 1 we might want to send A in the future
B->C 0 0,1 0,1 Send both snapshots 0 and 1 to C, such that C could

also know the diff to A without relying on B
rw C 0 0,1 0,1*
ro C + snap 0 0,1 0,1,2 Keep snapshot 0 for sending to A, snapshot 1 for

sending to B
C->B 0 0,2 0,2 Because we sent to B and B was the only node being

in state 1, we can discard snapshot 1
rw B 0 0,2* 0,2
ro B + snap 0 0,2,3 0,2 Keep snapshot 0 for sending to A, snapshot 2 for

sending to C
B->A 2,3 2,3 0,2 Because we sent to A and A was the only node being

in state 0, we can discard snapshot 0
rw A 2,3* 2,3 0,2

2 Usecase

The main usecase is data synchronization for a single
user having multiple machines. Because the user won’t
work on two machines at the same time, there are fixed
points where they switch from one machine to another.
That’s when this tool can be used to update all changes
they did on the current machine to the other machine.
Because all other machines were in read-only mode dur-
ing the time of modification on the current machine, the
user won’t be annoyed with having to deal with merge
conflicts.

Another usecase is for backing up data. Updating a
node with new data while not deleting old snapshots is
equivalent to backing up to that node. If dataloss then
occurs on a node, it’s very easy to recover from a node
with a backup by just inverting the data flow. While
this functionality would be nice, it’s secondary to this
project proposal.

3 Goal

The goal of this project is to finish a solid usable im-
plementation of the system described above on the ZFS
filesystem. The code should be split into 3 packages:
One library package for the implementation of the sys-
tem parametric over the primitives used. One for the
executable using the ZFS primitives. A third package
should contain an executable that implements such a
system based on primitives in an arbitrary filesystems,
which won’t be as efficient, but useful for both testing
and people that don’t have ZFS available.

4 Potential Extensions
While this system can be implemented with just a single
command to transfer the write lock between nodes, a
number of useful extensions can be added:

• Support transferring the updated data without
transferring the write lock. This is needed to im-
plement the backup usecase.

• In case that the node holding the write lock isn’t on-
line, it should be possible to force an acquisition of
the write lock, temporarily creating multiple locks,
at the expense of potential data loss in case the two
locks join again. This is also useful for the backup
usecase.

• Generating a simple visualization of the data flow
between nodes over time.

• Adding other useful basic commands such:

– Acquiring the write lock without having spec-
ified which node currently holds it by asking
around, useful when a node wants to write to
the data.

– Pushing the write lock to another unspecified
node, useful when the node holding the write
lock wants to go offline, what’s the best node
to push it to?

2


	Description
	Primitives
	How it works

	Usecase
	Goal
	Potential Extensions

